

messytables: all your rows are belong to us

Tabular data as published on the web is often not well formatted
and structured. Messytables tries to detect and fix errors in the
data. Typical examples include:

	Finding the header of a table when there are explanations and
text fragments in the first few rows of the table.

	Guessing the type of columns in CSV data.

	Guessing the format of a byte stream.

This library provides data structures and some heuristics to
fix these problems and read a wide number of different tabular
abominations.

Example

messytables offers some commands and data structures to read and
evaluate data. A typical use might look like this:

from messytables import CSVTableSet, type_guess, \
 types_processor, headers_guess, headers_processor, \
 offset_processor, any_tableset

fh = open('messy.csv', 'rb')

Load a file object:
table_set = CSVTableSet(fh)

If you aren't sure what kind of file it is, you can use
any_tableset.
#table_set = any_tableset(fh)

A table set is a collection of tables:
row_set = table_set.tables[0]

A row set is an iterator over the table, but it can only
be run once. To peek, a sample is provided:
print row_set.sample.next()

guess header names and the offset of the header:
offset, headers = headers_guess(row_set.sample)
row_set.register_processor(headers_processor(headers))

add one to begin with content, not the header:
row_set.register_processor(offset_processor(offset + 1))

guess column types:
types = type_guess(row_set.sample, strict=True)

and tell the row set to apply these types to
each row when traversing the iterator:
row_set.register_processor(types_processor(types))

now run some operation on the data:
for row in row_set:
 do_something(row)

As you can see in the example above, messytables gives you a toolbox
of independent methods. There is no ready-made row_set.guess_types()
because there are many ways to perform type guessing that we may
implement in the future. Therefore, heuristic operations are independent
of the main data structures. Also note that type_guess is done after
adding the offset_processor so that the headers are not part of the sample
that we use for type guessing.

Core entities

Messytables uses a few core entities to avoid the nesting depth involved
in generic data types (a dict in a list in a dict).

	
class messytables.core.Cell(value, column=None, type=None)

	A cell is the basic value type. It always has a value (that
may be None and may optionally also have a type and column name
associated with it. If no type is set, the String type is set
but no type conversion is set.

	
value

	The actual content of the cell.

	
column

	The name of the column this cell is in.

	
type

	CellType of this cell.

	
empty

	Stringify the value and check that it has a length.

	
class messytables.core.TableSet(fileobj)

	A table set is used for data formats in which multiple tabular
objects are bundled. This might include relational databases and
workbooks used in spreadsheet software (Excel, LibreOffice).

For each format, we derive from this abstract base class, providing a
constructor that takes a file object and tables() that returns each table.
This means you can stream a table set directly off a web site or some
similar source.

On any fatal errors, it should raise messytables.ReadError

	
tables

	Return a listing of tables (i.e. RowSets) in the TableSet.
Each table has a name.

	
class messytables.core.RowSet(typed=False)

	A row set (aka: table) is a simple wrapper for an iterator of
rows (which in turn is a list of Cell objects). The main table
iterable can only be traversed once, so on order to allow analytics
like type and header guessing on the data, a sample of window
rows is read, cached, and made available.

On any fatal errors, it should raise messytables.ReadError

	
__iter__(sample=False)

	Apply processors to the row data.

	
dicts(sample=False)

	Return a representation of the data as an iterator of
ordered dictionaries. This is less specific than the cell
format returned by the generic iterator but only gives a
subset of the information.

	
register_processor(processor)

	Register a stream processor to be used on each row. A
processor is a function called with the RowSet as its
first argument and the row to be processed as the second
argument.

	
class messytables.types.CellType

	A cell type maintains information about the format
of the cell, providing methods to check if a type is
applicable to a given value and to convert a value to the
type.

	
cast(value)

	Convert the value to the type. This may throw
a quasi-random exception if conversion fails.

	
test(value)

	Test if the value is of the given type. The
default implementation calls cast and checks if
that throws an exception. True or False

CSV support

CSV support uses Python’s dialect sniffer to detect the separator and
quoting mechanism used in the input file.

	
class messytables.commas.CSVTableSet(fileobj, delimiter=None, quotechar=None, name=None, encoding=None, window=None, doublequote=None, lineterminator=None, skipinitialspace=None, **kw)

	A CSV table set. Since CSV is always just a single table,
this is just a pass-through for the row set.

	
tables

	Return a listing of tables (i.e. RowSets) in the TableSet.
Each table has a name.

	
class messytables.commas.CSVRowSet(name, fileobj, delimiter=None, quotechar=None, encoding='utf-8', window=None, doublequote=None, lineterminator=None, skipinitialspace=None)

	A CSV row set is an iterator on a CSV file-like object
(which can potentially be infinetly large). When loading,
a sample is read and cached so you can run analysis on the
fragment.

Excel support

The library supports workbooks in the Microsoft Excel 2003 format.

	
class messytables.excel.XLSTableSet(fileobj=None, filename=None, window=None, encoding=None, with_formatting_info=True, **kw)

	An excel workbook wrapper object.

	
tables

	Return a listing of tables (i.e. RowSets) in the TableSet.
Each table has a name.

	
class messytables.excel.XLSRowSet(name, sheet, window=None)

	Excel support for a single sheet in the excel workbook. Unlike
the CSV row set this is not a streaming operation.

	
raw(sample=False)

	Iterate over all rows in this sheet. Types are automatically
converted according to the excel data types specified, including
conversion of excel dates, which are notoriously buggy.

The newer, XML-based Excel format is also supported but uses a different class.

HTML file support

The library supports HTML documents, using lxml [http://www.lxml.de] as a
parser.

Removes the content of nested tables from the parent table. The order of the
tables is ill-defined.

	
class messytables.html.HTMLTableSet(fileobj=None, filename=None, window=None, **kw)

	A TableSet from a HTML document.

	
tables

	Return a listing of tables (i.e. RowSets) in the TableSet.
Each table has a name.

	
class messytables.html.HTMLRowSet(name, sheet, window=None)

	A RowSet representing a HTML table.

PDF file support

The library supports PDF documents, using
pdftables [https://pdftables.readthedocs.io] to extract tables.

Works only for PDFs which contain text information: somewhat erratic in quality.

	
class messytables.pdf.PDFTableSet(fileobj=None, filename=None, **kw)

	A TableSet from a PDF document.

	
tables

	Return a listing of tables (i.e. RowSets) in the TableSet.
Each table has a name.

	
class messytables.pdf.PDFRowSet(name, table)

	A RowSet representing a PDF table.

ZIP file support

The library supports loading CSV or Excel files from within ZIP files.

	
class messytables.zip.ZIPTableSet(fileobj, **kw)

	Reads TableSets from inside a ZIP file

	
tables

	Return a listing of tables (i.e. RowSets) in the TableSet.
Each table has a name.

Auto-detecting file format

The library supports loading files in a generic way.

	
any.any_tableset(fileobj, mimetype=None, extension='', auto_detect=True, **kw)

	Reads any supported table type according to a specified
MIME type or file extension or automatically detecting the
type.

Best matching TableSet loaded with the fileobject is returned.
Matching is done by looking at the type (e.g mimetype=’text/csv’), then
the file extension (e.g. extension=’tsv’), then autodetecting the
file format by using the magic library which looks at the first few
bytes of the file BUT is often wrong. Consult the source for recognized
MIME types and file extensions.

On error it raises messytables.ReadError

Type detection

One aspect missing from some tabular representations (in particular the
CSV format) is type information on the individual cells in the table. We
can brute-force guess these types by attempting to convert all members
of a given column into all types and searching for the best match.

	
types.type_guess(rows, types=[<class 'messytables.types.StringType'>, <class 'messytables.types.DecimalType'>, <class 'messytables.types.IntegerType'>, <class 'messytables.types.DateType'>, <class 'messytables.types.BoolType'>, <class 'messytables.types.TimeType'>, <class 'messytables.types.CurrencyType'>, <class 'messytables.types.PercentageType'>], strict=False)

	The type guesser aggregates the number of successful
conversions of each column to each type, weights them by a
fixed type priority and select the most probable type for
each column based on that figure. It returns a list of
CellType. Empty cells are ignored.

Strict means that a type will not be guessed
if parsing fails for a single cell in the column.

The supported types include:

	
class messytables.types.StringType

	A string or other unconverted type.

	
class messytables.types.IntegerType

	An integer field.

	
class messytables.types.FloatType

	FloatType is deprecated

	
class messytables.types.DecimalType

	Decimal number, decimal.Decimal or float numbers.

	
class messytables.types.BoolType(true_values=None, false_values=None)

	A boolean field. Matches true/false, yes/no and 0/1 by default,
but a custom set of values can be optionally provided.

	
class messytables.types.DateType(format)

	The date type is special in that it also includes a specific
date format that is used to parse the date, additionally to the
basic type information.

	
class messytables.types.DateUtilType

	The date util type uses the dateutil library to
parse the dates. The advantage of this type over
DateType is the speed and better date detection. However,
it does not offer format detection.

Do not use this together with the DateType

Headers detection

While the CSV convention is to include column headers as the first row of
the data file. Unfortunately, many people feel the need to put titles,
general info etc. in the top of tabular data. Therefore, we need to scan
the first few rows of the data, to guess which one is actually the header.

	
headers.headers_guess(rows, tolerance=1)

	Guess the offset and names of the headers of the row set.
This will attempt to locate the first row within tolerance
of the mode of the number of rows in the row set sample.

The return value is a tuple of the offset of the header row
and the names of the columns.

Stream processors

Stream processors are used to apply transformations to the row set upon
iteration. In order to apply transformations to a RowSet you can
register a stream processor. A processor is simply a function that takes
the RowSet and the current row (a list of Cell) as arguments and
returns a modified version of the row or None to indicate the row
should be dropped.

Most processors are implemented as closures called with some arguments:

	
types.types_processor(types, strict=False)

	Apply the column types set on the instance to the
current row, attempting to cast each cell to the specified
type.

Strict means that casting errors are not ignored

	
util.offset_processor(offset)

	Skip offset from the given iterator. This can
be used in combination with the headers_processor to
apply the result of a header scan to the table.

	Parameters:	offset (int) – Offset to be skipped

	
util.null_processor(nulls)

	Replaces every occurrence of items from nulls with None.

	Parameters:	nulls (list) – List of items to be replaced

	
headers.headers_processor(headers)

	Add column names to the cells in a row_set. If no header is
defined, use an autogenerated name.

JSON table schema

Messytables can convert guessed headers and types to the JSON table schema [http://www.dataprotocols.org/en/latest/json-table-schema.html].

	
jts.rowset_as_jts(rowset, headers=None, types=None)

	Create a json table schema from a rowset

	
jts.headers_and_typed_as_jts(headers, types)

	Create a json table schema from headers and types as
returned from headers_guess()
and type_guess().

License

Copyright (c) 2013 The Open Knowledge Foundation Ltd.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | X
 | Z

_

 	
 	__iter__() (messytables.core.RowSet method)

A

 	
 	any_tableset() (messytables.any method)

B

 	
 	BoolType (class in messytables.types)

C

 	
 	cast() (messytables.types.CellType method)

 	Cell (class in messytables.core)

 	CellType (class in messytables.types)

 	
 	column (Cell attribute)

 	CSVRowSet (class in messytables.commas)

 	CSVTableSet (class in messytables.commas)

D

 	
 	DateType (class in messytables.types)

 	DateUtilType (class in messytables.types)

 	
 	DecimalType (class in messytables.types)

 	dicts() (messytables.core.RowSet method)

E

 	
 	empty (messytables.core.Cell attribute)

F

 	
 	FloatType (class in messytables.types)

H

 	
 	headers_and_typed_as_jts() (messytables.jts method)

 	headers_guess() (messytables.headers method)

 	
 	headers_processor() (messytables.headers method)

 	HTMLRowSet (class in messytables.html)

 	HTMLTableSet (class in messytables.html)

I

 	
 	IntegerType (class in messytables.types)

N

 	
 	null_processor() (messytables.util method)

O

 	
 	offset_processor() (messytables.util method)

P

 	
 	PDFRowSet (class in messytables.pdf)

 	
 	PDFTableSet (class in messytables.pdf)

R

 	
 	raw() (messytables.excel.XLSRowSet method)

 	register_processor() (messytables.core.RowSet method)

 	
 	RowSet (class in messytables.core)

 	rowset_as_jts() (messytables.jts method)

S

 	
 	StringType (class in messytables.types)

T

 	
 	tables (messytables.commas.CSVTableSet attribute)

 	(messytables.core.TableSet attribute)

 	(messytables.excel.XLSTableSet attribute)

 	(messytables.html.HTMLTableSet attribute)

 	(messytables.pdf.PDFTableSet attribute)

 	(messytables.zip.ZIPTableSet attribute)

 	
 	TableSet (class in messytables.core)

 	test() (messytables.types.CellType method)

 	type (Cell attribute)

 	type_guess() (messytables.types method)

 	types_processor() (messytables.types method)

V

 	
 	value (Cell attribute)

X

 	
 	XLSRowSet (class in messytables.excel)

 	
 	XLSTableSet (class in messytables.excel)

Z

 	
 	ZIPTableSet (class in messytables.zip)

 nav.xhtml

 Table of Contents

 		messytables: all your rows are belong to us

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/up.png

_static/file.png

_static/comment-bright.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

